jittor_geometric.utils
- jittor_geometric.utils.add_remaining_self_loops(edge_index, edge_weight=None, fill_value=1.0, num_nodes=None)[source]
Adds remaining self-loop \((i,i) \in \mathcal{E}\) to every node \(i \in \mathcal{V}\) in the graph given by
edge_index
. In case the graph is weighted and already contains a few self-loops, only non-existent self-loops will be added with edge weights denoted byfill_value
.- Parameters:
edge_index (Var int32) – The edge indices.
edge_weight (Var, optional) – One-dimensional edge weights. (default:
None
)fill_value (float, optional) – If
edge_weight
is notNone
, will add self-loops with edge weights offill_value
to the graph. (default:1.
)num_nodes (int, optional) – The number of nodes, i.e.
max_val + 1
ofedge_index
. (default:None
)
- Return type:
(
Var int32
,Var
)
- jittor_geometric.utils.add_self_loops(edge_index, edge_weight=None, fill_value=1.0, num_nodes=None)[source]
Adds a self-loop \((i,i) \in \mathcal{E}\) to every node \(i \in \mathcal{V}\) in the graph given by
edge_index
. In case the graph is weighted, self-loops will be added with edge weights denoted byfill_value
.- Parameters:
edge_index (Var int32) – The edge indices.
edge_weight (Var, optional) – One-dimensional edge weights. (default:
None
)fill_value (float, optional) – If
edge_weight
is notNone
, will add self-loops with edge weights offill_value
to the graph. (default:1.
)num_nodes (int, optional) – The number of nodes, i.e.
max_val + 1
ofedge_index
. (default:None
)
- Return type:
(
Var int32
,Var
)
- jittor_geometric.utils.coalesce(edge_index, edge_weight=None, num_nodes=None, reduce='sum', is_sorted=False, sort_by_row=True)[source]
- jittor_geometric.utils.contains_isolated_nodes(edge_index, num_nodes=None)[source]
Returns
True
if the graph given byedge_index
contains isolated nodes.- Parameters:
edge_index (Var int32) – The edge indices.
num_nodes (int, optional) – The number of nodes, i.e.
max_val + 1
ofedge_index
. (default:None
)
- Return type:
bool
- jittor_geometric.utils.contains_self_loops(edge_index)[source]
Returns
True
if the graph given byedge_index
contains self-loops.- Parameters:
edge_index (Var int32) – The edge indices.
- Return type:
bool
- jittor_geometric.utils.degree(index, num_nodes=None, dtype=None)[source]
Computes the (unweighted) degree of a given one-dimensional index Var.
- jittor_geometric.utils.get_laplacian(edge_index, edge_weight=None, normalization=None, dtype=None, num_nodes=None)[source]
Computes the graph Laplacian of the graph given by
edge_index
and optionaledge_weight
.- Parameters:
edge_index (Var int32) – The edge indices.
edge_weight (Var, optional) – One-dimensional edge weights. (default:
None
)normalization (str, optional) –
The normalization scheme for the graph Laplacian (default:
None
):1.
None
: No normalization \(\mathbf{L} = \mathbf{D} - \mathbf{A}\)2.
"sym"
: Symmetric normalization \(\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}\)3.
"rw"
: Random-walk normalization \(\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1} \mathbf{A}\)dtype (Var.dtype, optional) – The desired data type of returned Var in case
edge_weight=None
. (default:None
)num_nodes (int, optional) – The number of nodes, i.e.
max_val + 1
ofedge_index
. (default:None
)
- jittor_geometric.utils.induced_graph(edge_index, node_selected, max_nodes)[source]
Generate the node-induced graph of the original graph described by ‘edge_index’. It is expected that max_nodes is larger than, or equal to the real max node index in edge_index, or may cause errors.
- Parameters:
edge_index (jittor.Var) – The edge list describing the whole graph.
node_selected (jittor.Var) – The node list of the expected induced graph.
max_nodes (int) – The maximum node index in edge_index.
- Return type:
Tuple
[Var
,Var
]
- jittor_geometric.utils.is_jittor_sparse_tensor(src)[source]
Returns
True
if the inputsrc
is ajittor.sparse.Tensor
(in any sparse layout).- Parameters:
src (Any) – The input object to be checked.
- Return type:
bool
- jittor_geometric.utils.neighbor_sampler(neighbor_list, neighbor_offs, neighbor_nums, source_node, max_nodes=None, max_edges=None)[source]
Samples the neighbor of all the source nodes, in the given graph described by neighbor_list, neighbor_hook, and neighbor_offs.
- Parameters:
neighbor_list (jittor.Var) – An ordered list of neighbors.
neighbor_offs (jittor.Var) – For each node i, the neighbors of i are neighbor_list[neighbor_offs[i], neighbor_offs[i+1]]. There is neighbor_offs[max_nodes], which should equals to negihbor_list.size(0).
neighbor_nums (jittor.Var) – For each node i, the number of its neighbors is neighbor_nums[i] == neighbor_offs[i+1] - neighbor_offs[i].For neighbor_nums[i] == 0, should be preprocessed (usually assigned max_edges).
source_node (jittor,Var) – The source node of sampling.
max_nodes (int, optional) – The total number of nodes, assert to be (the length of neighbor_offs) - 1 and (the length of neighbor_nums) .
max_edges (int, optional) – The total number of edges, assert to be the length of neighbor_list.
- Return type:
Var
- jittor_geometric.utils.one_hot(index, num_classes=None)[source]
Taskes a one-dimensional
index
var and returns a one-hot encoded representation of it with shape[*, num_classes]
that has zeros everywhere except where the index of last dimension matches the corresponding value of the input var, in which case it will be1
.- Parameters:
index (jittor.Var) – The one-dimensional input var.
num_classes (int, optional) – The total number of classes. If set to
None
, the number of classes will be inferred as one greater than the largest class value in the input var. (default:None
)dtype (jittor.dtype, optional) – The
dtype
of the output var.
- Return type:
Var
- jittor_geometric.utils.randomwalk_sampler(neighbor_list, neighbor_offs, neighbor_nums, source_node, walk_length, max_nodes=None, max_edges=None)[source]
Samples the random_walk of all the source nodes with length ‘walk_length’, in the given graph described by neighbor_list, neighbor_hook, and neighbor_offs.
- Parameters:
neighbor_list (jittor.Var) – An ordered list of neighbors.
neighbor_offs (jittor.Var) – For each node i, the neighbors of i are neighbor_list[neighbor_offs[i], neighbor_offs[i+1]]. There is neighbor_offs[max_nodes], which should equals to negihbor_list.size(0).
neighbor_nums (jittor.Var) – For each node i, the number of its neighbors is neighbor_nums[i] == neighbor_offs[i+1] - neighbor_offs[i].For neighbor_nums[i] == 0, should be preprocessed (usually assigned max_edges).
source_node (jittor,Var) – The source node of sampling.
walk_length (int) – The length of random walk.
max_nodes (int, optional) – The total number of nodes, assert to be (the length of neighbor_offs) - 1 and (the length of neighbor_nums) .
max_edges (int, optional) – The total number of edges, assert to be the length of neighbor_list.
- Return type:
Var
- jittor_geometric.utils.remove_isolated_nodes(edge_index, edge_attr=None, num_nodes=None)[source]
Removes the isolated nodes from the graph given by
edge_index
with optional edge attributesedge_attr
. In addition, returns a mask of shape[num_nodes]
to manually filter out isolated node features later on. Self-loops are preserved for non-isolated nodes.- Parameters:
edge_index (Var int32) – The edge indices.
edge_attr (Var, optional) – Edge weights or multi-dimensional edge features. (default:
None
)num_nodes (int, optional) – The number of nodes, i.e.
max_val + 1
ofedge_index
. (default:None
)
- Return type:
(Var int32, Var, Var bool)
- jittor_geometric.utils.remove_self_loops(edge_index, edge_attr=None)[source]
Removes every self-loop in the graph given by
edge_index
, so that \((i,i) \not\in \mathcal{E}\) for every \(i \in \mathcal{V}\).- Parameters:
edge_index (Var int32) – The edge indices.
edge_attr (Var, optional) – Edge weights or multi-dimensional edge features. (default:
None
)
- Return type:
(
Var int32
,Var
)
- jittor_geometric.utils.scatter(src, index, dim=0, dim_size=None, reduce='sum')[source]
Reduces all values from the
src
tensor at the indices specified in theindex
tensor along a given dimensiondim
. See the documentation of thetorch_scatter
package for more information.- Parameters:
src (torch.Var) – The source tensor.
index (torch.Var) – The index tensor.
dim (int, optional) – The dimension along which to index. (default:
0
)dim_size (int, optional) – The size of the output tensor at dimension
dim
. If set toNone
, will create a minimal-sized output tensor according toindex.max() + 1
. (default:None
)reduce (str, optional) – The reduce operation (
"sum"
,"mean"
,"mul"
,"min"
or"max"
). (default:"sum"
)
- Return type:
Var
- jittor_geometric.utils.segregate_self_loops(edge_index, edge_attr=None)[source]
Segregates self-loops from the graph.
- Parameters:
edge_index (Var int32) – The edge indices.
edge_attr (Var, optional) – Edge weights or multi-dimensional edge features. (default:
None
)
- Return type:
(
Var int32
,Var
,Var int32
,Var
)
- jittor_geometric.utils.unique(inputs, max_value=None)[source]
Sorts the elements of the
inputs
tensor in ascending order, and then delete the duplicated values. It is expected thatinputs
is one-dimensional and that it only contains positive integer values. Ifmax_value
is given, it can be used by the underlying algorithm for better performance (well this is fake because the index_sort() above cannot be directly called).- Parameters:
inputs (jittor.Var) – A vector with positive integer values.
max_value (int, optional) – The maximum value stored inside
inputs
. This value can be an estimation, but needs to be greater than or equal to the real maximum. (default:None
)
- Return type:
Var