from typing import Optional
import jittor as jt
from jittor import Var
from jittor_geometric.utils import add_self_loops, remove_self_loops
from .num_nodes import maybe_num_nodes
[docs]
def get_laplacian(edge_index, edge_weight: Optional[Var] = None,
normalization: Optional[str] = None,
dtype: Optional[int] = None,
num_nodes: Optional[int] = None):
r""" Computes the graph Laplacian of the graph given by :obj:`edge_index`
and optional :obj:`edge_weight`.
Args:
edge_index (Var int32): The edge indices.
edge_weight (Var, optional): One-dimensional edge weights.
(default: :obj:`None`)
normalization (str, optional): The normalization scheme for the graph
Laplacian (default: :obj:`None`):
1. :obj:`None`: No normalization
:math:`\mathbf{L} = \mathbf{D} - \mathbf{A}`
2. :obj:`"sym"`: Symmetric normalization
:math:`\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A}
\mathbf{D}^{-1/2}`
3. :obj:`"rw"`: Random-walk normalization
:math:`\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1} \mathbf{A}`
dtype (Var.dtype, optional): The desired data type of returned Var
in case :obj:`edge_weight=None`. (default: :obj:`None`)
num_nodes (int, optional): The number of nodes, *i.e.*
:obj:`max_val + 1` of :attr:`edge_index`. (default: :obj:`None`)
"""
if normalization is not None:
assert normalization in ['sym', 'rw'] # 'Invalid normalization'
edge_index, edge_weight = remove_self_loops(edge_index, edge_weight)
if edge_weight is None:
edge_weight = jt.ones((edge_index.size(1)), dtype=dtype)
num_nodes = maybe_num_nodes(edge_index, num_nodes)
row, col = edge_index[0], edge_index[1]
shape = list(edge_weight.shape)
shape[0] = num_nodes
deg = jt.zeros(shape)
deg = jt.scatter(deg, 0, row, src=edge_weight, reduce='add')
if normalization is None:
# L = D - A.
edge_index, _ = add_self_loops(edge_index, num_nodes=num_nodes)
edge_weight = jt.concat([-edge_weight, deg], dim=0)
elif normalization == 'sym':
# Compute A_norm = -D^{-1/2} A D^{-1/2}.
deg_inv_sqrt = deg.pow(-0.5)
# deg_inv_sqrt.masked_fill(deg_inv_sqrt == float('inf'), 0)
for i in range(deg_inv_sqrt.shape[0]):
if deg_inv_sqrt[i] == float('inf'):
deg_inv_sqrt[i] = 0
edge_weight = deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
# L = I - A_norm.
edge_index, tmp = add_self_loops(edge_index, -edge_weight,
fill_value=1., num_nodes=num_nodes)
assert tmp is not None
edge_weight = tmp
else:
# Compute A_norm = -D^{-1} A.
deg_inv = 1.0 / deg
deg_inv.masked_fill(deg_inv == float('inf'), 0)
edge_weight = deg_inv[row] * edge_weight
# L = I - A_norm.
edge_index, tmp = add_self_loops(edge_index, -edge_weight,
fill_value=1., num_nodes=num_nodes)
assert tmp is not None
edge_weight = tmp
return edge_index, edge_weight