jittor_geometric.dataloader
- class jittor_geometric.dataloader.ClusterLoader(dataset, num_parts, mini_splits, fixed=False)[source]
The graph dataset loader, using metis to partition graph into ‘mini_splits’ groups and randomly merge them into ‘num_parts’ mini-batches for training. The dataset loader yields the induced graph of the selected nodes iteratively.
- Parameters:
dataset (InMemoryDataset) – The original graph dataset.
num_parts (int) – Number of expected mini-batches.
mini_splits (int) – Number of parts that metis partitions.
fixed (bool, optional) – If set to ‘True’, the dataset loader will yield identical mini-batches every round.
- class jittor_geometric.dataloader.DataLoader(dataset, batch_size=1, shuffle=False, follow_batch=None, exclude_keys=None, collate_fn=None, **kwargs)[source]
A data loader which merges data objects from a
jittor_geometric.data.Dataset
to a mini-batch. Data objects can be either of typeData
orHeteroData
.- Parameters:
dataset (Dataset) – The dataset from which to load the data.
batch_size (int, optional) – How many samples per batch to load. (default:
1
)shuffle (bool, optional) – If set to
True
, the data will be reshuffled at every epoch. (default:False
)follow_batch (List[str], optional) – Creates assignment batch vectors for each key in the list. (default:
None
)exclude_keys (List[str], optional) – Will exclude each key in the list. (default:
None
)**kwargs (optional) – Additional arguments.
- class jittor_geometric.dataloader.GeneralLoader(dataset, shuffle=None)[source]
-
dataset:
InMemoryDataset
-
itercnt:
int
-
itermax:
int
-
dataset:
- class jittor_geometric.dataloader.NeighborLoader(dataset, source_node=None, num_neighbors=None, batch_size=None, fixed=False)[source]
The graph dataset loader, samples the neighbors of source nodes for graph convolution iteratively and randomly. The dataset loader yields all the tuples of (source_node, sampled neighbor) as the graph edge. The yielded data block will contain the node map and node index.
- Parameters:
dataset (InMemoryDataset) – The original graph dataset.
source_node (Var) – The list of source_node.
num_neighbors (List[int]) – Number of sampled neighbors per layer. For example, [2, 3] represents sample 2 neighbors, and 3 neighbors of each sampled ones.
batch_size (int) – Size of each mini-batch
fixed (bool, optional) – If set to ‘True’, the dataset loader will yield identical mini-batches every round.
- class jittor_geometric.dataloader.RandomNodeLoader(dataset, num_parts, fixed=True)[source]
The graph dataset loader, randomly split all of the nodes into ‘num_parts’ mini-batches. The dataset loader yields the induced graph of the selected nodes iteratively.
- Parameters:
dataset (InMemoryDataset) – The original graph dataset.
num_parts (int) – Number of expected mini-batches.
fixed (bool, optional) – If set to ‘True’, the dataset loader will yield identical mini-batches every round.