jittor_geometric.data
Author: lusz Date: 2025-01-14 00:47:42 Description:
- class jittor_geometric.data.Batch(x=None, edge_index=None, edge_attr=None, y=None, pos=None, normal=None, face=None, column_indices=None, row_offset=None, csr_edge_weight=None, row_indices=None, column_offset=None, csc_edge_weight=None, **kwargs)[source]
A data object describing a batch of graphs as one big (disconnected) graph. Inherits from
jittor_geometric.data.Data
.- property batch_size: int
Alias for
num_graphs
.
- classmethod from_data_list(data_list, follow_batch=None, exclude_keys=None)[source]
Constructs a
Batch
object from a list ofData
objects. The assignment vectorbatch
is created on the fly. In addition, creates assignment vectors for each key infollow_batch
. Will exclude any keys given inexclude_keys
.- Return type:
- get_example(idx)[source]
Gets the
Data
object at indexidx
. TheBatch
object must have been created viafrom_data_list()
in order to be able to reconstruct the initial object.- Return type:
- property num_graphs: int
Returns the number of graphs in the batch.
- class jittor_geometric.data.ConformerGen(**params)[source]
This class designed to generate conformers for molecules represented as SMILES strings using provided parameters and configurations. The transform method uses multiprocessing to speed up the conformer generation process.
- single_process(smiles)[source]
Processes a single SMILES string to generate conformers using the specified method.
- Parameters:
smiles – (str) The SMILES string representing the molecule.
- Returns:
A unimolecular data representation (dictionary) of the molecule.
- Raises:
ValueError – If the conformer generation method is unrecognized.
- class jittor_geometric.data.Data(x=None, edge_index=None, edge_attr=None, y=None, pos=None, normal=None, face=None, column_indices=None, row_offset=None, csr_edge_weight=None, row_indices=None, column_offset=None, csc_edge_weight=None, **kwargs)[source]
A plain old python object modeling a single graph with various (optional) attributes:
- Parameters:
x (Var, optional) – Node feature matrix with shape
[num_nodes, num_node_features]
. (default:None
)edge_index (Var.int32, optional) – Graph connectivity in COO format with shape
[2, num_edges]
. (default:None
)edge_attr (Var, optional) – Edge feature matrix with shape
[num_edges, num_edge_features]
. (default:None
)y (Var, optional) – Graph or node targets with arbitrary shape. (default:
None
)pos (Var, optional) – Node position matrix with shape
[num_nodes, num_dimensions]
. (default:None
)normal (Var, optional) – Normal vector matrix with shape
[num_nodes, num_dimensions]
. (default:None
)face (Var.int32, optional) – Face adjacency matrix with shape
[3, num_faces]
. (default:None
)
The data object is not restricted to these attributes and can be extented by any other additional data.
Example:
data = Data(x=x, edge_index=edge_index) data.train_idx = jt.array([...], dtype=Var.int32) data.test_mask = jt.array([...], dtype=Var.bool)
- apply(func, *keys)[source]
Applies the function
func
to all Var attributes*keys
. If*keys
is not given,func
is applied to all present attributes.
- contiguous(*keys)[source]
Ensures a contiguous memory layout for all attributes
*keys
. If*keys
is not given, all present attributes are ensured to have a contiguous memory layout.
- cpu(*keys)[source]
Copies all attributes
*keys
to CPU memory. If*keys
is not given, the conversion is applied to all present attributes.
- cuda(device=None, non_blocking=False, *keys)[source]
Copies all attributes
*keys
to CUDA memory. If*keys
is not given, the conversion is applied to all present attributes.
- property keys
Returns all names of graph attributes.
- property num_edge_features
Returns the number of features per edge in the graph.
- property num_edges
Returns the number of edges in the graph. For undirected graphs, this will return the number of bi-directional edges, which is double the amount of unique edges.
- property num_faces
Returns the number of faces in the mesh.
- property num_features
Alias for
num_node_features
.
- property num_node_features
Returns the number of features per node in the graph.
- property num_nodes
Returns or sets the number of nodes in the graph.
Note
The number of nodes in your data object is typically automatically inferred, e.g., when node features
x
are present. In some cases however, a graph may only be given by its edge indicesedge_index
. Jittor Geometric then guesses the number of nodes according toedge_index.max().item() + 1
, but in case there exists isolated nodes, this number has not to be correct and can therefore result in unexpected batch-wise behavior. Thus, we recommend to set the number of nodes in your data object explicitly viadata.num_nodes = ...
. You will be given a warning that requests you to do so.
- class jittor_geometric.data.Dataset(root=None, transform=None, pre_transform=None, pre_filter=None)[source]
- Parameters:
root (string, optional) – Root directory where the dataset should be saved. (optional:
None
)transform (callable, optional) – A function/transform that takes in an
torch_geometric.data.Data
object and returns a transformed version. The data object will be transformed before every access. (default:None
)pre_transform (callable, optional) – A function/transform that takes in an
jittor_geometric.data.Data
object and returns a transformed version. The data object will be transformed before being saved to disk. (default:None
)pre_filter (callable, optional) – A function that takes in an
jittor_geometric.data.Data
object and returns a boolean value, indicating whether the data object should be included in the final dataset. (default:None
)
- property num_edge_features
Returns the number of features per edge in the dataset.
- property num_features
Alias for
num_node_features
.
- property num_node_features
Returns the number of features per node in the dataset.
- property processed_dir
- property processed_file_names
The name of the files to find in the
self.processed_dir
folder in order to skip the processing.
- property processed_paths
The filepaths to find in the
self.processed_dir
folder in order to skip the processing.
- property raw_dir
- property raw_file_names
The name of the files to find in the
self.raw_dir
folder in order to skip the download.
- property raw_paths
The filepaths to find in order to skip the download.
- class jittor_geometric.data.Dictionary(*, bos='[CLS]', pad='[PAD]', eos='[SEP]', unk='[UNK]', extra_special_symbols=None)[source]
A mapping from symbols to consecutive integers
- add_from_file(f)[source]
Loads pre-defined dictionary symbols. If f == “default”, it will load the default atom dictionary. Otherwise, loads from a text file and adds its symbols to this instance.
- class jittor_geometric.data.GraphChunk(chunks, chunk_id, v_num, global_v_num, local_mask=None, local_feature=None, local_label=None)[source]
- static load(file_path)[source]
Load a GraphChunk instance from a binary file. :type file_path:
str
:param file_path: Path to the file from which the instance will be loaded. :return: Loaded GraphChunk instance.
- save(file_path)[source]
Save the GraphChunk instance as a binary file. :type file_path:
str
:param file_path: Path to the file where the instance will be saved.
- set_csr(column_indices, row_offset, edge_weight=None)[source]
Set the CSR (Compressed Sparse Row) representation of the graph. :type column_indices: :param column_indices: Column indices of the non-zero elements. :type row_offset: :param row_offset: Row offsets for the CSR format. :type edge_weight: :param edge_weight: Optional edge weights.
- class jittor_geometric.data.InMemoryDataset(root=None, transform=None, pre_transform=None, pre_filter=None)[source]
Dataset base class for creating graph datasets which fit completely into CPU memory.
- Parameters:
root (string, optional) – Root directory where the dataset should be saved. (default:
None
)transform (callable, optional) – A function/transform that takes in an
jittor_geometric.data.Data
object and returns a transformed version. The data object will be transformed before every access. (default:None
)pre_transform (callable, optional) – A function/transform that takes in an
jittor_geometric.data.Data
object and returns a transformed version. The data object will be transformed before being saved to disk. (default:None
)pre_filter (callable, optional) – A function that takes in an
jittor_geometric.data.Data
object and returns a boolean value, indicating whether the data object should be included in the final dataset. (default:None
)
- static collate(data_list)[source]
Collates a python list of data objects to the internal storage format of
torch_geometric.data.InMemoryDataset
.
- property num_classes
The number of classes in the dataset.
- property processed_file_names
The name of the files to find in the
self.processed_dir
folder in order to skip the processing.
- property raw_file_names
The name of the files to find in the
self.raw_dir
folder in order to skip the download.
- class jittor_geometric.data.TemporalData(src=None, dst=None, t=None, msg=None, y=None, edge_ids=None, **kwargs)[source]
- apply(func, *keys)[source]
Applies the function
func
to all Var attributes*keys
. If*keys
is not given,func
is applied to all present attributes.
- property keys
- property num_edges
- property num_events
- property num_nodes
- jittor_geometric.data.download_url(url, folder, log=True)[source]
Downloads the content of an URL to a specific folder.
- Parameters:
url (string) – The url.
folder (string) – The folder.
log (bool, optional) – If
False
, will not print anything to the console. (default:True
)
- jittor_geometric.data.extract_zip(path, folder, log=True)[source]
Extracts a zip archive to a specific folder. :type path: :param path: The path to the tar archive. :type path: string :type folder: :param folder: The folder. :type folder: string :type log: :param log: If
False
, will not print anything to theconsole. (default:
True
)