Get Started
Welcome to JittorGeometric! This guide will walk you through the basic steps to get started with graph neural networks using this library.
Quick Start
Let’s start by building a simple Graph Neural Network (GNN) model using jittor_geometric.
Step 1: Import Libraries
First, import the necessary libraries:
import jittor as jt
from jittor import nn
from jittor_geometric.nn import GCNConv
from jittor_geometric.datasets import Planetoid
Step 2: Load a Dataset
We will use the popular Planetoid dataset (e.g., Cora) for this example:
dataset = Planetoid(root='your_path', name='Cora')
data = dataset[0] # Getting the first graph
# Prepare data
from jittor_geometric.ops import cootocsr, cootocsc, gcn_norm
edge_index, edge_weight = data.edge_index, data.edge_attr
edge_index, edge_weight = gcn_norm(edge_index, edge_weight, v_num, improved=False, add_self_loops=True)
with jt.no_grad():
data.csc = cootocsc(edge_index, edge_weight, v_num)
data.csr = cootocsr(edge_index, edge_weight, v_num)
Step 3: Define a Simple GCN Model
Now, let’s define a basic Graph Convolutional Network (GCN) model:
class GCNModel(jt.Module):
def __init__(self, dataset, dropout=0.8):
super(GCNModel, self).__init__()
self.conv1 = GCNConv(in_channels=dataset.num_features, out_channels=256, spmm=args.spmm)
self.conv2 = GCNConv(in_channels=256, out_channels=dataset.num_classes, spmm=args.spmm)
self.dropout = dropout
def execute(self):
x, csc, csr = data.x, data.csc, data.csr
x = nn.relu(self.conv1(x, csc, csr))
x = nn.dropout(x, self.dropout, is_train=self.training)
x = self.conv2(x, csc, csr)
return nn.log_softmax(x, dim=1)
Step 4: Training the Model
Let’s train the model on the dataset:
# Initialize the model
model = GCNModel(dataset)
# Set optimizer
optimizer = nn.Adam(params=model.parameters(), lr=0.001, weight_decay=5e-4)
# Training loop
for epoch in range(200):
model.train()
pred = model()[data.train_mask]
label = data.y[data.train_mask]
loss = nn.nll_loss(pred, label)
optimizer.step(loss)
Step 5: Evaluate the Model
After training, evaluate the model’s performance:
model.eval()
out = model()
pred, _ = jt.argmax(out, dim=1)
y_test = data.y[data.test_mask]
accuracy = pred.equal(y_test).sum().item() / data.test_mask.sum().item()
print(f'Accuracy: {accuracy.item() * 100:.2f}%')
Congratulations, you have successfully trained and tested a GNN model using jittor_geometric!
Next Steps
Explore more datasets: Planetoid, Cora, Citeseer, etc.
Try other graph neural network layers like SAGEConv, GATConv, etc.
Check out the documentation for more advanced features.