from typing import Optional, Tuple
import jittor
import jittor_geometric.typing
from jittor_geometric.typing import jt_lib
def index_sort(
inputs: jittor.Var,
max_value: Optional[int] = None,
) -> Tuple[jittor.Var, jittor.Var]:
r"""Sorts the elements of the :obj:`inputs` tensor in ascending order.
It is expected that :obj:`inputs` is one-dimensional and that it only
contains positive integer values. If :obj:`max_value` is given, it can
be used by the underlying algorithm for better performance.
Args:
inputs (jittor.Var): A vector with positive integer values.
max_value (int, optional): The maximum value stored inside
:obj:`inputs`. This value can be an estimation, but needs to be
greater than or equal to the real maximum.
(default: :obj:`None`)
"""
if not jittor_geometric.typing.WITH_INDEX_SORT: # pragma: no cover
return inputs.sort()
return jt_lib.ops.index_sort(inputs, max_value=max_value)
[docs]
def unique(
inputs: jittor.Var,
max_value: Optional[int] = None,
) -> jittor.Var:
r"""Sorts the elements of the :obj:`inputs` tensor in ascending order,
and then delete the duplicated values.
It is expected that :obj:`inputs` is one-dimensional and that it only
contains positive integer values. If :obj:`max_value` is given, it can
be used by the underlying algorithm for better performance (well this
is fake because the index_sort() above cannot be directly called).
Args:
inputs (jittor.Var): A vector with positive integer values.
max_value (int, optional): The maximum value stored inside
:obj:`inputs`. This value can be an estimation, but needs to be
greater than or equal to the real maximum.
(default: :obj:`None`)
"""
res = inputs.sort()[0]
#print(res)
selection = jittor.zeros_like(res, dtype = "bool")
selection[0] = True
selection[1:] = res[1:] != res[:-1]
res = res[selection]
return res