'''
Description:
Author: ivam
Date: 2024-12-13
'''
from typing import Optional, Tuple
from jittor_geometric.typing import Adj, OptVar
import jittor as jt
import numpy as np
from jittor import Var,nn,Module
from jittor_geometric.utils import add_remaining_self_loops
from jittor_geometric.utils.num_nodes import maybe_num_nodes
from ..inits import glorot, zeros
from jittor_geometric.data import CSC, CSR
from jittor_geometric.ops import SpmmCsr, aggregateWithWeight
[docs]
class GPRGNN(Module):
r"""The graph propagation operator from the `"Adaptive Universal
Generalized PageRank Graph Neural Network"
<https://arxiv.org/abs/2006.07988>`_ paper
Mathematical Formulation:
.. math::
\mathbf{Z} = \sum_{k=0}^{K} \alpha_k \mathbf{P}^{k} \mathbf{X}.
where:
:math:`\mathbf{X}` is the input node feature matrix.
:math:`\mathbf{Z}` is the output node feature matrix.
:math:`\mathbf{P}` is the normalized adjacency matrix of the graph.
:math:`\alpha_k` is the parameter for the :math:`k`-th order polynomial.
Args:
K (int): Order of polynomial, or maximum number of hops considered for message passing.
alpha (float): Parameter controlling the weighting of different hops.
Init (str): Initialization method for the propagation weights. Possible values are 'SGC', 'PPR', 'NPPR', 'Random', 'WS'.
spmm (bool, optional): If set to `True`, uses sparse matrix multiplication (SPMM) for propagation. Default is `True`.
"""
def __init__(self, K: int, alpha: float, Init: str, spmm:bool=True, **kwargs):
kwargs.setdefault('aggr', 'add')
super(GPRGNN, self).__init__(**kwargs)
self.K = K
assert Init in ['SGC', 'PPR', 'NPPR', 'Random', 'WS']
if Init == 'SGC':
# SGC-like
TEMP = 0.0*np.ones(K+1)
TEMP[-1] = 1.0
elif Init == 'PPR':
# PPR-like
TEMP = alpha*(1-alpha)**np.arange(K+1)
TEMP[-1] = (1-alpha)**K
elif Init == 'NPPR':
# Negative PPR
TEMP = (alpha)**np.arange(K+1)
TEMP = TEMP/np.sum(np.abs(TEMP))
elif Init == 'Random':
# Random
bound = np.sqrt(3/(K+1))
TEMP = np.random.uniform(-bound, bound, K+1)
TEMP = TEMP/np.sum(np.abs(TEMP))
elif Init == 'WS':
# Specify Gamma
TEMP = Gamma
TEMP_jt = jt.array(TEMP)
self.temp = nn.Parameter(TEMP_jt)
self.spmm = spmm
self.reset_parameters()
[docs]
def reset_parameters(self):
pass
[docs]
def execute(self, x: Var, csc: OptVar, csr: OptVar) -> Var:
out = x*(self.temp[0])
for k in range(self.K):
if self.spmm and jt.flags.use_cuda==1:
x = self.propagate_spmm(x=x, csr=csr)
else:
x = self.propagate_msg(x=x, csc=csc, csr=csr)
out = out + self.temp[k+1]*x
return out
# propagate by message passing
[docs]
def propagate_msg(self,x, csc: CSC, csr:CSR):
out = aggregateWithWeight(x,csc,csr)
return out
# propagate by spmm
[docs]
def propagate_spmm(self, x, csr:CSR):
out = SpmmCsr(x,csr)
return out
def __repr__(self):
return '{}({}, {})'.format(self.__class__.__name__, self.in_channels,
self.out_channels)