Source code for jittor_geometric.nn.conv.gpr_conv

'''
Description: 
Author: ivam
Date: 2024-12-13
'''
from typing import Optional, Tuple
from jittor_geometric.typing import Adj, OptVar
import jittor as jt
import numpy as np
from jittor import Var,nn,Module
from jittor_geometric.utils import add_remaining_self_loops
from jittor_geometric.utils.num_nodes import maybe_num_nodes

from ..inits import glorot, zeros
from jittor_geometric.data import CSC, CSR
from jittor_geometric.ops import SpmmCsr, aggregateWithWeight

[docs] class GPRGNN(Module): r"""The graph propagation operator from the `"Adaptive Universal Generalized PageRank Graph Neural Network" <https://arxiv.org/abs/2006.07988>`_ paper Mathematical Formulation: .. math:: \mathbf{Z} = \sum_{k=0}^{K} \alpha_k \mathbf{P}^{k} \mathbf{X}. where: :math:`\mathbf{X}` is the input node feature matrix. :math:`\mathbf{Z}` is the output node feature matrix. :math:`\mathbf{P}` is the normalized adjacency matrix of the graph. :math:`\alpha_k` is the parameter for the :math:`k`-th order polynomial. Args: K (int): Order of polynomial, or maximum number of hops considered for message passing. alpha (float): Parameter controlling the weighting of different hops. Init (str): Initialization method for the propagation weights. Possible values are 'SGC', 'PPR', 'NPPR', 'Random', 'WS'. spmm (bool, optional): If set to `True`, uses sparse matrix multiplication (SPMM) for propagation. Default is `True`. """ def __init__(self, K: int, alpha: float, Init: str, spmm:bool=True, **kwargs): kwargs.setdefault('aggr', 'add') super(GPRGNN, self).__init__(**kwargs) self.K = K assert Init in ['SGC', 'PPR', 'NPPR', 'Random', 'WS'] if Init == 'SGC': # SGC-like TEMP = 0.0*np.ones(K+1) TEMP[-1] = 1.0 elif Init == 'PPR': # PPR-like TEMP = alpha*(1-alpha)**np.arange(K+1) TEMP[-1] = (1-alpha)**K elif Init == 'NPPR': # Negative PPR TEMP = (alpha)**np.arange(K+1) TEMP = TEMP/np.sum(np.abs(TEMP)) elif Init == 'Random': # Random bound = np.sqrt(3/(K+1)) TEMP = np.random.uniform(-bound, bound, K+1) TEMP = TEMP/np.sum(np.abs(TEMP)) elif Init == 'WS': # Specify Gamma TEMP = Gamma TEMP_jt = jt.array(TEMP) self.temp = nn.Parameter(TEMP_jt) self.spmm = spmm self.reset_parameters()
[docs] def reset_parameters(self): pass
[docs] def execute(self, x: Var, csc: OptVar, csr: OptVar) -> Var: out = x*(self.temp[0]) for k in range(self.K): if self.spmm and jt.flags.use_cuda==1: x = self.propagate_spmm(x=x, csr=csr) else: x = self.propagate_msg(x=x, csc=csc, csr=csr) out = out + self.temp[k+1]*x return out
# propagate by message passing
[docs] def propagate_msg(self,x, csc: CSC, csr:CSR): out = aggregateWithWeight(x,csc,csr) return out
# propagate by spmm
[docs] def propagate_spmm(self, x, csr:CSR): out = SpmmCsr(x,csr) return out
def __repr__(self): return '{}({}, {})'.format(self.__class__.__name__, self.in_channels, self.out_channels)