Source code for jittor_geometric.nn.conv.chebnet2_conv

'''
Description: 
Author: ivam
Date: 2024-12-13
'''
from typing import Optional, Tuple
from jittor_geometric.typing import Adj, OptVar
import jittor as jt
import math
import numpy as np
from jittor import Var,nn,Module
from jittor_geometric.utils import add_remaining_self_loops
from jittor_geometric.utils.num_nodes import maybe_num_nodes
from scipy.special import comb
from ..inits import glorot, zeros, ones
from jittor_geometric.data import CSC, CSR
from jittor_geometric.ops import SpmmCsr, aggregateWithWeight

def cheby(i,x):
    if i==0:
        return 1
    elif i==1:
        return x
    else:
        T0=1
        T1=x
        for ii in range(2,i+1):
            T2=2*x*T1-T0
            T0,T1=T1,T2
        return T2

[docs] class ChebNetII(Module): r"""The graph propagation operator from the `"Convolutional Neural Networks on Graphs with Chebyshev Approximation, Revisited" <https://arxiv.org/abs/2202.03580>`_ paper Mathematical Formulation: .. math:: \mathbf{Z} = \sum_{k=0}^{K} \alpha_k \mathrm{cheb}_{k}(\tilde{\mathbf{L}}) \mathbf{X}. where: :math:`\mathbf{X}` is the input node feature matrix. :math:`\mathbf{Z}` is the output node feature matrix. :math:`\mathrm{cheb}_{k}` is the Chebyshev polynomial of order :math:`k`. :math:`\alpha_k` is the parameter for the :math:`k`-th order Chebyshev polynomial, they are further derived via learnable values on the Chebyshev nodes. :math:`\tilde{L}` is the normalized Laplacian matrix of the graph, translated to the interval :math:`[-1,1]`. Args: K (int): Order of polynomial, or maximum number of hops considered for message passing. spmm (bool, optional): If set to `True`, uses sparse matrix multiplication (SPMM) for propagation. Default is `True`. **kwargs (optional): Additional arguments for the `MessagePassing` class. """ def __init__(self, K: int, spmm:bool=True, **kwargs): kwargs.setdefault('aggr', 'add') super(ChebNetII, self).__init__(**kwargs) self.K = K self.spmm = spmm self.temp= jt.random((self.K + 1,)) self.reset_parameters()
[docs] def reset_parameters(self): ones(self.temp)
[docs] def execute(self, x: Var, csc: OptVar, csr: OptVar) -> Var: coe_tmp = nn.relu(self.temp) coe = coe_tmp.clone() for i in range(self.K+1): coe[i] = coe_tmp[0]*cheby(i,math.cos((self.K+0.5)*math.pi/(self.K+1))) for j in range(1,self.K+1): x_j = math.cos((self.K-j+0.5)*math.pi/(self.K+1)) coe[i] = coe[i]+coe_tmp[j]*cheby(i,x_j) coe[i] = 2*coe[i]/(self.K+1) Tx_0=x if self.spmm and jt.flags.use_cuda==1: Tx_1 = self.propagate_spmm(x=x, csr=csr) else: Tx_1 = self.propagate_msg(x=x, csc=csc, csr=csr) out=coe[0]/2*Tx_0+coe[1]*Tx_1 for i in range(2,self.K+1): if self.spmm and jt.flags.use_cuda==1: Tx_2 = self.propagate_spmm(x=Tx_1, csr=csr) else: Tx_2 = self.propagate_msg(x=Tx_1, csc=csc, csr=csr) Tx_2 = 2*Tx_2-Tx_0 out = out+coe[i]*Tx_2 Tx_0,Tx_1 = Tx_1, Tx_2 return out
# propagate by message passing
[docs] def propagate_msg(self,x, csc: CSC, csr:CSR): out = aggregateWithWeight(x,csc,csr) return out
# propagate by spmm
[docs] def propagate_spmm(self, x, csr:CSR): out = SpmmCsr(x,csr) return out
def __repr__(self): return '{}({}, {})'.format(self.__class__.__name__, self.in_channels, self.out_channels)