Source code for jittor_geometric.nn.conv.cheb_conv

from typing import Optional
from jittor_geometric.typing import OptVar

import jittor as jt
from jittor import Var
from jittor_geometric.nn.conv import MessagePassing
from jittor_geometric.utils import remove_self_loops, add_self_loops
from jittor_geometric.utils import get_laplacian

from ..inits import glorot, zeros


[docs] class ChebConv(MessagePassing): r"""The chebyshev spectral graph convolutional operator from the `"Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering" <https://arxiv.org/abs/1606.09375>`_ paper .. math:: \mathbf{X}^{\prime} = \sum_{k=1}^{K} \mathbf{Z}^{(k)} \cdot \mathbf{\Theta}^{(k)} where :math:`\mathbf{Z}^{(k)}` is computed recursively by .. math:: \mathbf{Z}^{(1)} &= \mathbf{X} \mathbf{Z}^{(2)} &= \mathbf{\hat{L}} \cdot \mathbf{X} \mathbf{Z}^{(k)} &= 2 \cdot \mathbf{\hat{L}} \cdot \mathbf{Z}^{(k-1)} - \mathbf{Z}^{(k-2)} and :math:`\mathbf{\hat{L}}` denotes the scaled and normalized Laplacian :math:`\frac{2\mathbf{L}}{\lambda_{\max}} - \mathbf{I}`. Args: in_channels (int): Number of input features per node. out_channels (int): Number of output features per node. K (int): Order of Chebyshev polynomials used in the layer. normalization (str, optional): Type of Laplacian normalization. Options are: :obj:`"sym"` (symmetric), :obj:`"rw"` (random walk), or :obj:`None` (no normalization). Default is :obj:`"sym"`. bias (bool, optional): Whether to include a learnable bias term. Default is :obj:`True`. **kwargs (optional): Additional arguments for the `MessagePassing` class. """ def __init__(self, in_channels, out_channels, K, normalization='sym', bias=True, **kwargs): kwargs.setdefault('aggr', 'add') super(ChebConv, self).__init__(**kwargs) assert K > 0 assert normalization in [None, 'sym', 'rw'], 'Invalid normalization' self.in_channels = in_channels self.out_channels = out_channels self.normalization = normalization self.weight = jt.ones((K, in_channels, out_channels)) if bias: self.bias = jt.ones((out_channels,)) else: self.bias = None self.reset_parameters()
[docs] def reset_parameters(self): glorot(self.weight) zeros(self.bias)
def __norm__(self, edge_index, num_nodes: Optional[int], edge_weight: OptVar, normalization: Optional[str], lambda_max, dtype: Optional[int] = None, batch: OptVar = None): edge_index, edge_weight = remove_self_loops(edge_index, edge_weight) edge_index, edge_weight = get_laplacian(edge_index, edge_weight, normalization, dtype, num_nodes) if batch is not None and lambda_max.numel() > 1: lambda_max = lambda_max[batch[edge_index[0]]] edge_weight = (2.0 * edge_weight) / lambda_max # edge_weight.masked_fill((edge_weight == float('inf')).int32(), 0) # edge_weight.masked_fill((edge_weight == float('-inf')).int32(), 0) for i in range(edge_weight.shape[0]): if edge_weight[i] == float('inf'): edge_weight[i] = 0 # print('edge_weight: ', edge_weight.shape, # edge_weight.min(), edge_weight.max()) edge_index, edge_weight = add_self_loops(edge_index, edge_weight, fill_value=-1., num_nodes=num_nodes) assert edge_weight is not None return edge_index, edge_weight
[docs] def execute(self, x, edge_index, edge_weight: OptVar = None, batch: OptVar = None, lambda_max: OptVar = None): """""" if self.normalization != 'sym' and lambda_max is None: raise ValueError('You need to pass `lambda_max` to `execute() in`' 'case the normalization is non-symmetric.') if lambda_max is None: lambda_max = Var([2.0]) if not isinstance(lambda_max, Var): lambda_max = Var([lambda_max]) assert lambda_max is not None edge_index, norm = self.__norm__(edge_index, x.size(self.node_dim), edge_weight, self.normalization, lambda_max, dtype=x.dtype, batch=batch) Tx_0 = x # Tx_1 = x # Dummy. out = jt.matmul(Tx_0, self.weight[0]) # print('self weight:', self.weight) if self.weight.size(0) > 1: # print('norm: ', norm.shape, # norm.min(), norm.max()) Tx_1 = self.propagate(edge_index, x=x, norm=norm, size=None) # print('Tx_1: ', Tx_1.shape, Tx_1.min(), Tx_1.max()) out = out + jt.matmul(Tx_1, self.weight[1]) for k in range(2, self.weight.size(0)): Tx_2 = self.propagate(edge_index, x=Tx_1, norm=norm, size=None) Tx_2 = 2. * Tx_2 - Tx_0 out = out + jt.matmul(Tx_2, self.weight[k]) Tx_0, Tx_1 = Tx_1, Tx_2 if self.bias is not None: out += self.bias return out
[docs] def message(self, x_j, norm): return norm.reshape(-1, 1) * x_j
def __repr__(self): return '{}({}, {}, K={}, normalization={})'.format( self.__class__.__name__, self.in_channels, self.out_channels, self.weight.size(0), self.normalization)