from typing import Any, Dict
import numpy as np
import scipy.sparse as sp
from jittor import Var
import jittor as jt
from jittor_geometric.data import Data
from jittor_geometric.utils import remove_self_loops
from jittor_geometric.utils import to_undirected as to_undirected_fn
[docs]
def read_npz(path: str, to_undirected: bool = True) -> Data:
with np.load(path, allow_pickle=True) as f:
return parse_npz(f, to_undirected=to_undirected)
def parse_npz(f: Dict[str, Any], to_undirected: bool = True) -> Data:
x = sp.csr_matrix((f['attr_data'], f['attr_indices'], f['attr_indptr']),
f['attr_shape']).todense()
x = np.array(x)
x = jt.array(x).float32()
x[x > 0] = 1
adj = sp.csr_matrix((f['adj_data'], f['adj_indices'], f['adj_indptr']),
f['adj_shape']).tocoo()
row = jt.array(adj.row).int32()
col = jt.array(adj.col).int32()
edge_index = jt.stack([row, col], dim=0)
edge_index, _ = remove_self_loops(edge_index)
if to_undirected:
edge_index, _ = to_undirected_fn(edge_index, num_nodes=x.shape[0])
y = jt.array(f['labels']).int32()
return Data(x=x, edge_index=edge_index, y=y)