Source code for jittor_geometric.datasets.planetoid

import os.path as osp

from jittor_geometric.io import read_planetoid_data
from jittor_geometric.data import InMemoryDataset, download_url
import jittor as jt
from jittor import init


[docs] class Planetoid(InMemoryDataset): r"""The citation network datasets "Cora", "CiteSeer" and "PubMed" from the `"Revisiting Semi-Supervised Learning with Graph Embeddings" <https://arxiv.org/abs/1603.08861>`_ paper. This class represents three widely-used citation network datasets: Cora, CiteSeer, and PubMed. Nodes correspond to documents, and edges represent citation links between them. The datasets are designed for semi-supervised learning tasks, where training, validation, and test splits are provided as binary masks. Dataset Details: - **Cora**: A citation network where nodes represent machine learning papers, and edges represent citations. The task is to classify papers into one of seven classes. - **CiteSeer**: A citation network of research papers in computer and information science. The task is to classify papers into one of six classes. - **PubMed**: A citation network of biomedical papers on diabetes. The task is to classify papers into one of three classes. Splitting Options: - **public**: The original fixed split from the paper `"Revisiting Semi-Supervised Learning with Graph Embeddings"`. - **full**: Uses all nodes except those in the validation and test sets for training, inspired by `"FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling"`. - **random**: Generates random splits for train, validation, and test sets based on the specified parameters. Args: root (str): Root directory where the dataset should be saved. name (str): The name of the dataset (:obj:`"Cora"`, :obj:`"CiteSeer"`, :obj:`"PubMed"`). split (str): The type of dataset split (:obj:`"public"`, :obj:`"full"`, :obj:`"random"`). Default is :obj:`"public"`. num_train_per_class (int, optional): Number of training samples per class for :obj:`"random"` split. Default is 20. num_val (int, optional): Number of validation samples for :obj:`"random"` split. Default is 500. num_test (int, optional): Number of test samples for :obj:`"random"` split. Default is 1000. transform (callable, optional): A function/transform that takes in a :obj:`torch_geometric.data.Data` object and returns a transformed version. Default is :obj:`None`. pre_transform (callable, optional): A function/transform that takes in a :obj:`torch_geometric.data.Data` object and returns a transformed version before saving to disk. Default is :obj:`None`. Example: >>> dataset = Planetoid(root='/path/to/dataset', name='Cora', split='random') >>> data = dataset[0] # Access the processed data object """ url = 'https://github.com/kimiyoung/planetoid/raw/master/data' def __init__(self, root, name, split="public", num_train_per_class=20, num_val=500, num_test=1000, transform=None, pre_transform=None): self.name = name super(Planetoid, self).__init__(root, transform, pre_transform) self.data, self.slices = jt.load(self.processed_paths[0]) self.split = split assert self.split in ['public', 'full', 'random'] if split == 'full': data = self.get(0) init(data.train_mask, True) data.train_mask[jt.logical_or( data.val_mask, data.test_mask)] = False self.data, self.slices = self.collate([data]) elif split == 'random': data = self.get(0) init(data.train_mask, False) for c in range(self.num_classes): idx = (data.y == c).nonzero().view(-1) idx = idx[jt.randperm(idx.size(0))[:num_train_per_class]] data.train_mask[idx] = True remaining = jt.logical_not(data.train_mask).nonzero().view(-1) remaining = remaining[jt.randperm(remaining.size(0))] init(data.val_mask, False) data.val_mask[remaining[:num_val]] = True init(data.test_mask, False) data.test_mask[remaining[num_val:num_val + num_test]] = True self.data, self.slices = self.collate([data]) @property def raw_dir(self): return osp.join(self.root, self.name, 'raw') @property def processed_dir(self): return osp.join(self.root, self.name, 'processed') @property def raw_file_names(self): names = ['x', 'tx', 'allx', 'y', 'ty', 'ally', 'graph', 'test.index'] return ['ind.{}.{}'.format(self.name.lower(), name) for name in names] @property def processed_file_names(self): return 'data.pkl'
[docs] def download(self): for name in self.raw_file_names: download_url('{}/{}'.format(self.url, name), self.raw_dir)
[docs] def process(self): data = read_planetoid_data(self.raw_dir, self.name) data = data if self.pre_transform is None else self.pre_transform(data) jt.save(self.collate([data]), self.processed_paths[0])
def __repr__(self): return '{}()'.format(self.name)