
MGNN: Graph Neural Networks Inspired by Distance Geometry Problem
Guanyu Cui 1 Zhewei Wei∗ 1

1Renmin University of China

Graph Neural Networks (GNNs)

X fθ(·)

Emb. Function
Graph Prop. / Conv. Layers

· · · Z

R(·)

Pooling / Read‐out

gθ(·)

Class. Function

Y

Embedding Phase← → Classification Phase

Figure 1. A typical structure of GNNs.

Embedding function f (X): map featuresX ∈ Rn×F to initial embeddings Z(0) ∈ Rn×d;
Graph propagation / convolution GP(Z(0); A): propagate embedding K times;
Read‐out / pooling R(Z(K); A) (optional): pooling for graph‐level tasks;
Classification function g(·): final classification to generate predictions Y .

Expressive Power & Universality of GNNs

Spectral GNNs: designing universal filters (e.g., ChebNet, GPRGNN, BernNet, ...).
Spatial GNNs: designing GNNs bounded by k‐WL tests (e.g., GIN, ...).

There are works exploring relations between GNNs and geometric objects (e.g., curvature, cel‐
lular sheaves) and physical concepts (e.g., oscillators).

Q: Can we define universality of spatial GNNs from a geometric perspective?

Preliminaries

Definition (Equivalent). For a given graph G = (V, E), two node embedding matrices Z(1) and
Z(2) ∈ Rn×d are equivalent if for all (i, j) ∈ E, ∥Z(1)

i: −Z
(1)
j: ∥2 = ∥Z(2)

i: −Z
(2)
j: ∥2 holds.

Definition (Congruent). For a given graph G = (V, E), two node embedding matrices Z(1) and
Z(2) ∈ Rn×d are congruent if for all i, j ∈ V , ∥Z(1)

i: −Z
(1)
j: ∥2 = ∥Z(2)

i: −Z
(2)
j: ∥2 holds.

Definition (Globally Rigid). For a given graph G = (V, E), an embedding matrix Z is globally
rigid if all its equivalent embedding matrices Z ′ are also congruent to Z.

Definition (Rigid). For a given graphG = (V, E), an embedding matrixZ is rigid if all equivalent
embeddings that can be obtained by continuous motion from Z are congruent to Z.

Figure 2. Left: A globally rigid graph in R2; Right: A rigid but not globally rigid graph in R2, since it has an
equivalent but not congruent embedding.

Definition (Metric Matrix). The metric matrix of an embedding matrix Z ∈ Rn×d is defined as
MZ = (∥Zi:−Zj:∥2)ij. We also define the mapping from an embedding matrixZ to its metric
matrixMZ asMZ = M(Z).

Defining Spatial-Universality

Observation:

3

54

Decision Boundary
congruent

transformation 3

5

4

Defining Spatial-Universality (Cont’d)

Theorem (MLPs Are Congruent‐Insensitive). Given two congruent embedding matrices Z1
and Z2, for any MLPM (with biases), there always exists another MLPN (also with biases)
such thatMLPM (Z1) = MLPN (Z2).

Idea:

ZN Class. Phase of GNNN

ZU Class. Phase of GNNU

Y N

Y U

ZN
∼=V 2 ZU Theorem Y N = Y UX

Emb. Phase of GNNN

Emb. Phase of GNNU

Some “programs” such asM(ZN).

Spatial‐Universal: It can arrange nodes with a given metric matrix!
This idea is closely related to the Distance Geometry Problem (DGP).
Distance Geometry Problem (DGP)
Given a positive integer d, a graph G = (V, E), and a symmetric non‐negative matrix M ,
decide whether there exists an embedding matrix Z ∈ Rn×d, such that

∀(i, j) ∈ E, ∥Zi: −Zj:∥ = M ij.

Optimization Objective

About the Optimization Objective

Full metric matrix: O(n2)⇒ partial metric matrix on edges: O(m).
For globally rigid graphs, partial metric matrix is enough to determine the “shape” of the
embedding, this modification does not weaken the expressive power.
However, solving the DGP is NP‐Hard. We can not directly arrange the nodes, thus we
introduce an error‐tolerant objective:

Ep(Z; M , E) = 1
2
∥A⊙ (M(Z)−M ) ∥2F =

∑
(i,j)∈E

1
2
(
∥Zi: −Zj:∥2 −M ij

)2
.

This function is closely related to the raw Stress function σr in theMultidimensional
Scaling (MDS) problem and the potential energy of spring networks.

Figure 3. A spring network.

To align with other representative GNNs, we modify Ep and add a regularization term to
get the final objective:

L(Z; Z(0), M , E) = (1− α)Ẽp(Z; M , E) + α∥Z −Z(0)∥2F
= (1− α)Ep(D1/2Z; M , E) + α∥Z −Z(0)∥2F .

About the Metric Matrix

For scenarios with prior knowledge about distances between nodes (e.g., molecular
conformation generation, or graph drawing), directly use them; for other scenarios, learn a
metric matrix.
Our idea is to increase the distances between dissimilar nodes and reduce the distances
between similar nodes:
1. Introduce edge attention αij ∈ [−1, 1], when αij → 1⇔ i, j tend to belong to the same
class, and when αij → −1⇔ i, j tend to belong to different classes;

2. Map the initial embedding matrix Z(0) (defined later) to a hidden matrixH ;
3. Use attention mechanisms, such as αij = tanh

(
a⊤[H⊤i: ∥H

⊤
j: ]
)
or αij = tanh

(
Hi:W H⊤j:

)
to learn the edge attention;

4. Then we can setM ij =
1− αij

1 + αij + ε
∥Z(0)

i: −Z
(0)
j: ∥, where ε is a small positive number.

Framework

The Embedding Function

A linear layer f (X) = XW + 1b⊤ in linear GNNs, or
A two‐layer MLP f (X) = σ(σ(XW 1 + 1b⊤1 )W 2 + 1b⊤2 ) in spectral GNNs.

Propagation

Our goal is to design a propagation method that minimizes the objective.
It’s non‐convex. Following related works, we employ the stationary point iterationmethod.
By computing the gradient, setting it to zero, rearranging the terms, rewriting it as an
iteration form, substituting 1− α with β to allow more flexibility, it leads to:

Z(k+1) = (1− α)D−1/2AD−1/2Z(k) + βD−1/2LHD−1/2Z(k) + αZ(0),

whereH = A⊙M ⊙M(D−1/2Z)⊙−1, and LH = diag(H1)−H .
And we have the message‐passing form:

Z
(k+1)
i: = (1− α)

∑
j∈N (i)

Z
(k)
i:√
didj

+ β
∑

j∈N (i)

M ij

(
Z

(k)
i: −Z

(k)
j:

)
√

didj

∥∥∥Z
(k)
i: /
√

di −Z
(k)
j: /

√
dj

∥∥∥
2

+ αZ
(0)
i: .

Optional Linear and Non‐linear Transformations

We may incorporate linear and non‐linear transformations after each propagation step. In our
experiments without pre‐designed metric matrices, such as node classification, we utilize three
designs from the GCNII model: a linear transformation, the identity mapping, and a non‐linear
transformation (ReLU).

The Classification Function

We use a linear layer g(Z(K)) = Z(K)W + 1b⊤ as the final classification function.

Experiments

We have done the “Arranging Nodes with Given Metric Matrices” experiments on synthetic
graphs, supervised node classification and graph regression experiments on real‐world graphs.

Arranging Nodes with Given Metric Matrices

We generate two Stochastic Block Model (SBM) graphs, one homophilic and one
heterophilic, consisting of four blocks with 50 nodes in each block.
The node features are sampled from two 2‐dimensional Gaussian distributions.

If i and j are in the same class, we setM ij = 0; otherwise, we setM ij = 5.
We pass the node features through 8 MGNN layers, with α = 0.05 and β = 0.5.
For visualization results, please refer to the smaller posters below or our paper.

Supervised Node Classification and Graph Regression

Our MGNN model performs well, and the results are promising.
For experiment details and results, please refer to the smaller posters below or our paper.

MGNN: Graph Neural Networks Inspired by Distance Geometry Problem ∗Zhewei Wei is the corresponding author. Contact us: cuiguanyu@ruc.edu.cn; zhewei@ruc.edu.cn



MGNN: Graph Neural Networks Inspired by Distance Geometry Problem
Guanyu Cui 1 Zhewei Wei∗ 1

1Renmin University of China

Experiment I: Arranging Nodes with Given Metric Matrices

We pass the node features through 8 MGNN layers, with α = 0.05 and β = 0.5. After each round of
propagation, we visualize the results.

Figure 1. Visualization results of MGNN propagation layers.

Based on the results, we can confirm that our MGNN model aims to separate the four blocks.
The presence of homophilic edges adds convexity to our objective function, which is easier to
optimize.
Additionally, we provide visualization results obtained from the SGC layers and APPNP layers.

Figure 2. Visualization results of SGC propagation layers.

Figure 3. Visualization results of APPNP propagation layers.

Experiment II: Supervised Node Classification

For all datasets except ogbn‐arxiv, we generate 10 random splits with train/valid/test ratio of
60%/20%/20%. For the ogbn‐arxiv dataset, we generate 10 random splits using the get_idx_split()
function provided by the official package.
We then tune the hyper‐parameters 100 times for each model on each dataset. (Please refer to our
paper for the detailed ranges of hyperparameters.)
We train each model for a maximum of 1500 epochs, with early stopping set to 100, on each dataset
and report the results after hyper‐tuning.

Table 1. The results (accuracy with standard deviation) of the supervised node classification experiments. Boldface results
indicate the best model on each dataset, and underlined results are second best models.

Non‐Graph Spectral Spatial (Non‐Spectral) MGNNLinear MLP GCN SGC APPNP PointNet GAT GIN GCNII pGNN LINKX
Cora 76.09±1.55 76.11±1.58 88.25±1.09 88.34±1.41 89.30±1.45 84.43±1.94 88.71±0.89 85.76±1.18 88.52±1.40 88.78±1.20 82.82±1.96 89.04±1.20

CiteSeer 71.11±1.81 73.25±1.16 77.10±1.12 77.47±1.42 76.80±1.10 72.83±1.38 76.44±1.19 72.83±1.47 77.05±0.78 77.28±0.88 71.79±1.55 78.08±1.50
PubMed 87.06±0.67 88.21±0.46 89.07±0.42 87.59±0.54 89.75±0.47 89.18±0.38 87.77±0.67 87.15±0.54 90.24±0.55 89.79±0.38 86.77±0.59 90.37±0.47
CoraFull 60.55±0.76 61.61±0.56 71.86±0.75 71.86±0.70 71.88±0.75 63.32±1.02 70.65±0.86 67.11±0.46 71.09±0.72 72.36±0.58 63.57±0.55 72.42±0.69

CS 94.51±0.32 94.89±0.23 93.77±0.37 94.10±0.40 95.91±0.23 93.13±0.42 93.25±0.31 91.81±0.34 95.98±0.22 95.83±0.23 95.06±0.24 96.01±0.16
Physics 95.92±0.15 96.01±0.26 96.46±0.25 OOM 97.14±0.21 96.37±0.27 96.47±0.21 94.66±2.04 97.10±0.21 96.93±0.10 96.87±0.16 97.15±0.15
Cornell 78.65±2.82 75.95±4.43 50.27±6.86 53.51±4.32 77.84±6.49 71.08±5.93 50.27±7.66 49.46±7.46 76.76±7.76 77.30±8.22 71.08±12.09 81.89±6.29
Texas 81.35±4.90 83.78±7.55 61.08±8.65 56.22±6.37 86.76±1.46 82.16±6.30 61.08±5.57 64.05±4.20 88.65±4.95 85.14±5.16 84.32±5.24 90.00±2.72

Wisconsin 86.20±3.63 88.80±2.40 55.80±5.83 58.00±4.29 86.00±3.10 81.60±3.98 56.40±5.99 57.20±6.82 88.20±4.14 85.40±3.58 82.00±3.10 88.40±3.44
Chameleon 50.77±2.07 50.75±2.13 69.21±2.08 67.12±2.17 67.85±2.65 63.76±2.52 66.97±2.45 46.73±13.51 67.56±1.18 69.19±1.57 67.47±1.62 72.37±2.25
Squirrel 35.76±1.05 35.79±1.65 55.43±2.05 52.18±1.49 54.60±1.88 47.39±8.31 55.68±2.81 20.96±2.08 53.88±2.77 51.61±1.28 57.86±1.17 54.45±1.85
Actor 36.16±0.75 37.67±1.60 30.42±1.58 30.14±1.18 36.98±1.28 36.41±1.23 29.22±0.94 26.09±1.75 37.75±1.23 36.47±1.07 35.00±2.11 38.36±1.46
WikiCS 78.74±0.57 79.85±0.69 84.02±0.61 83.47±0.83 84.88±0.55 84.09±0.86 83.82±0.73 66.08±22.77 85.09±0.71 84.41±0.46 84.13±0.56 85.09±0.59

ogbn‐arxiv 52.80±0.19 53.81±0.23 70.48±0.18 68.77±0.06 70.50±0.11 69.89±0.59 71.04±0.27 66.60±0.53 71.48±0.21 68.50±0.17 59.28±2.22 70.73±0.17

Average Rank 9.21 7.86 6.79 7.69 3.50 7.86 7.57 10.50 3.50 4.36 7.29 1.57

Experiment III: Graph Regression

We utilized the publicly available train/validation/test split of the ZINC‐subset dataset.
For all models, we set the number of hidden units to 64. We limit the training of each model to a
maximum of 500 epochs. A batch size of 512 is utilized, and early stopping is implemented after 50
epochs on each dataset.
We conduct hyperparameter tuning for each model on each dataset and repeat this process 100
times. (Please refer to our paper for the detailed ranges of hyperparameters.)
To enhance reliability, we repeat the whole process five times and calculate the mean MAE (Mean
Absolute Error) and standard deviation for each model.

Table 2. The results of the graph regression experiments.

GCN GAT GIN PointNet MGNN
0.6143±0.0200 0.6458±0.0647 0.4410±0.0065 0.5293±0.0138 0.4751±0.0112

MGNN: Graph Neural Networks Inspired by Distance Geometry Problem ∗Zhewei Wei is the corresponding author. Contact us: cuiguanyu@ruc.edu.cn; zhewei@ruc.edu.cn


