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Introduction
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Graph Neural Networks

® Graph Neural Networks (GNNs) have become a central topic
in graph learning;
® They have found diverse applications in
® physics simulation,
e traffic forecasting,
® recommendation systems, and more...
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Graph Neural Networks

e A typical GNN architecture consists of some key components.

Pooling / Read-Out

Graph Prop. / Conv. Layers

Emb. Function

X — — ;,?_,;,?_,... -z — —Y

Class. Function

Embedding Phase <— | — Classification Phase
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Expressive Power & Universality of GNNs

® Many studies have explored the expressive power and
universality of GNNs.

e Spectral GNNs: Design universal graph filters.

e Spatial GNNs: Explore the connection between expressive
power of GNNs and the WL-test.
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q\ 2 WL test iterations Captures structures
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Graph Rooted subtree GNN aggregation

Image taken from Xu et al., How Powerful are Graph Neural Networks? (ICLR 2019)
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GNNs and Geometric / Physical Objects

® Growing interest in exploring the connections between GNNs
and various geometric and physical objects, such as:

® graph curvature,
® oscillators...
® No works have attempted to define the universality from a
geometric perspective. — The gap our paper aims to fill.
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Equivalent & Congruent

Definition (Equivalent)

Two embedding matrices ZW and Z? e R4 of a graph G
are equivalent (denoted as Z(M) =5 Z(?)) if

12—z =122 — 2|5 for all (i, j) € E.

Definition (Congruent)

Two embedding matrices ZW and Z®? e R4 of a graph G
are congruent (denoted as Z( ) =0 Z)) if
(2)

”Zgl) - Zg-:l)\|2 = HZ£2) i ll2 forall i, j € V.
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Graph Rigidity

Definition (Globally Rigid)

An embedding matrix Z of a graph G is globally rigid if all its
equivalent embedding matrices Z’ are also congruent to Z.
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Metric Matrix

Definition (The Metric Matrix of an Embedding Matrix)

The metric matrix of an embedding matrix Z € R"*? is
defined as a matrix that contains all pairwise distances between the
embedding vectors, i.e., (M z);j = || Z;. — Zj.|2.

® We also define a mapping from an embedding matrix Z to its
metric matrix M z as M z = M(Z).
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Spatial-Universality
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An Observation

Decision Boundary

congruent

Y

transformation
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Spatial-Universality
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Formalize the Observation

Theorem (MLPs Are Congruent-Insensitive)

Given two congruent embedding matrices Z1 and Z o, for any
MLP;, there always exists another MLP y such that they produce
identical predictions, i.e., MLP/(Z1) = MLPyN(Z3).
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Spatial-Universality

’—> {Emb. Phase of GNNy | — Zy —  Class. Phase of GNNN} — YN

C

X VZLN =y Ly Theorem YnN=Yy

k==

« +

Class. Phase of GNNU} — Yy

\—> [Emb. Phase of GNNy | — Zy —

T— Some “programs” such as M(Zy).

e Spatial-Universal: It can generate an embedding with the
given metric matrix!

® The metric matrix serves as a guiding program to arrange the
nodes.

e Closely related to the Distance Geometry Problem (DGP).
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Spatial-Universality
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The Distance Geometry Problem (DGP)

Distance Geometry Problem (DGP)

Given a positive integer d, a graph G = (V,E), and a
symmetric non-negative metric matrix M, decide whether there
exists an embedding matrix Z € R™ 9, such that

V(Z,j) € E, “Zz = ZJH = M’LJ
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Balance Efficiency and Expressive Power

® Full metric matrix: O(n?) = partial metric matrix: O(m);

Does this change affect the expressive power?
Yes.

® For any globally rigid graph, the full “shape” is determined by
partial metric matrix;

® For other cases, the “shape” cannot be determined, which
weakens the expressive power.

® The challenge is, deciding global rigidity and solving the DGP
are both NP-hard (Saxes 1979), making it difficult to
effectively find an embedding that satisfy the metric
constraint.
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Optimization Objective

® To address this, we utilize an optimization objective to
approximately arrange the nodes.

Ey(2; M) = | A© (M(2) - M) |}

1
= > 5 1Zis = Zjill2 = M;)*.
(i.j)eE

® This objective is derived from the raw stress function in the
Multidimensional Scaling (MDS) problem.
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Align with Other GNNs

® To make our optimization objective consistent with other
GNNs, we make certain modifications:
® Re-parameterize Z as D~ '/2Z to obtain the normalized
Laplacian matrix, aligning it with representative GNNs;
® Introduce a trade-off regularization term || Z — Z(O)||§, to align
with graph signal de-noising and other optimization derived
GNNs;

® Then we get the final form of the objective function:
£(2;2%. M, E) = (1 - 0)Ey)(Z; M, E) +ol|Z ~ Z|%

= (1 —)E,(D"*Z; M, E) + a| Z - ZO|}.
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About the Metric Matrix

® |n scenarios where we have prior knowledge about the
distances between nodes, like,

® molecular conformation generation, or
® graph drawing,
we can directly use that pre-designed metric matrix.
® In other scenarios without a pre-designed metric matrix, we
need to learn one from data.
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About the Metric Matrix

® General idea: Increase the distances between dissimilar nodes
and reduce the distances between similar nodes.
® Introduce edge attention «;; € [—1,1]:

® «y; approaches 1 < 4, j tend to belong to the same class;
® q;; approaches —1 < 1, j tend to belong to different classes;

inspired by research on heterophilic graphs and signed graphs.

Guanyu Cui, Zhewei Wei* Gaoling School of Atrtificial Intelligence Renmin University of China

MGNN: Graph Neural Networks Inspired by nce Geometry Problem



Optimization Objective
00000e

About the Metric Matrix

@® Map the initial embedding Z(®) (defined later) to a hidden
matrix H via an MLP;

@® Use attention mechanisms, such as
® concatenation: a;; = tanh (aT[HIHHI])
® bilinear: a;; = tanh (HzWH;r)
to learn the edge attention;
© Then we can set M;; = s HZ(O) Z;?)H- where ¢ is a

1+a;j+e
small positive number.
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The Embedding Function

® The first part is the embedding function fy(X), which maps
node features into a d-dimensional latent space to get the
initial embedding AR
® Common choices for this function include:
® Linear layers f(X) = XW +1b' in linear GNNSs, or

® Shallow MLPs f(X) = o(c(XW/ + 1b] YWy 4 1b, ) in
spectral GNNSs.
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Propagation

® The second part is the propagation module.

® Goal: Design a graph propagation method that minimizes the
objective function.

® Since the objective is typically non-convex, finding its global
minimum is challenging.

® Following related works that optimize the raw stress function
E,(Z; M, E), we use stationary point iteration method.
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Propagation

® By computing the gradient of L, setting it to 0, and
rearranging the terms, we obtain the following equation:

Z=01-a)D'?PAD'?Z+ (1 -a)DVPLyD '?Z + oz,

where H=A 0 M & M(D~'/22)°1, and
Ly = diag(H1) — H;
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Propagation

® Rewriting it as an iteration form and substituting 1 — « with
(B to allow more flexibility, it leads to the final propagation
equation:

Z(k+1) — (1 _ a)Dfl/QADfl/Qz(k) +ﬂD71/2LHD71/2z(k) -‘rOéZ(O),

® We also have the message-passing form of the propagation
rule:

Z(+1) z) M (Z(k) )

—(1-
oo JEN(l) \/W b 2 zA’?

+aZ()

IS

2
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Optional Linear and Non-Linear Transformations

® The third part is the optional linear and non-linear
transformations.

® After each propagation step, we have the flexibility to
incorporate them into our model.

® |n our experiments without pre-designed metric matrices, such
as node classification, we adopt three designs from the GCNII
model:
® 3 linear transformation,
® the identity mapping,
® and a non-linear transformation (ReLU).
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The Classification Function

® The last part is the final classification function gg(Z")),
which maps the embeddings to the output dimension.

® We choose a linear layer
g(ZzW))y = ZzwW + 16"

to be the classification function.
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Experiments

® We conducted “Arranging Nodes with Given Metric Matrices”
experiments on synthetic graphs.

o Additionally, we also performed supervised node classification
and graph regression experiments using our MGNN model.
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Experiments

® |n the first experiment, we generate two stochastic block
model (SBM) graphs, one homophilic and one heterophilic,
with 4 blocks, each containing 50 nodes;

® The nodes features are sampled from two 2-dimensional
Gaussian distributions.

® We visualize the graphs in the figures below.

original original
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Experiments

® For the metric matrix, if 7 and j are in the same class, we set
M ;; = 0; otherwise, we set M;; = 5;

® We pass the node features through 8 MGNN propagation
layers, with oo = 0.05, § = 0.5.

® The results show that our MGNN model separates the blocks.

MGNN-8 MGNN-8
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Experiments

® We also conducted supervised node classification and graph
regression experiments, and the results are promising.

® For detailed experiment information and results, please refer
to our paper.
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Summary

® We introduced the concept of spatial-universal GNNs;

® We proposed an optimization objective and designed the
MGNN model, to balance efficiency and expressive power;

® We demonstrated the effectiveness of our model through
extensive experiments.
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Thanks!
Q&A

Contact us: cuiguanyu®@ruc.edu.cn, zhewei@ruc.edu.cn
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