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◼ Overview of GNNs

◼ Spectral interpretation of GNNs

◼ Our works (OptBasisGNN, PolyGCL, PSHGCN)

◼ Summary & Perspectives

Outline
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Graphs are ubiquitous

Social Network Citation Network Protein Network

Road Network Signal Network
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Graph

◼ 𝐺 = (𝑉, 𝐸)

Adjacency matrix 𝑨 =

0 1 1 1 0 0

1 0 1 0 0 0

1 1 0 0 1 1

1 0 0 0 0 0

0 0 1 0 0 1

0 0 1 0 1 0

1

0 2

3 4

5
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Graph

◼ 𝐺 = (𝑉, 𝐸)
1

0 2

3 4

5

Degree matrix  𝑫 =

3 0 0 0 0 0

0 2 0 0 0 0

0 0 4 0 0 0

0 0 0 1 0 0

0 0 0 0 2 0

0 0 0 0 0 2
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Graph

◼ 𝐺 = (𝑉, 𝐸)
1

0 2

3 4

5

𝑷 =

0
𝟏

𝟑 ∙ 𝟐

𝟏

𝟑 ∙ 𝟒

𝟏

𝟑 ∙ 𝟏
0 0

𝟏

𝟑 ∙ 𝟐
0

𝟏

𝟐 ∙ 𝟒
0 0 0

𝟏

𝟑 ∙ 𝟒

𝟏

𝟐 ∙ 𝟒
0 0

𝟏

𝟒 ∙ 𝟐

𝟏

𝟒 ∙ 𝟐

𝟏

𝟑 ∙ 𝟏
0 0 0 0 0

0 0
𝟏

𝟒 ∙ 𝟐
0 0

𝟏

𝟐 ∙ 𝟐

0 0
𝟏

𝟒 ∙ 𝟐
0

𝟏

𝟐 ∙ 𝟐
0

𝑷 = 𝑫−1/2𝑨𝑫−1/2

Normalized 

adjacency matrix 
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Graph

◼ 𝐺 = (𝑉, 𝐸)
1

0 2

3 4

5

𝑳 =

1
−𝟏

𝟑 ∙ 𝟐

−𝟏

𝟑 ∙ 𝟒

−𝟏

𝟑 ∙ 𝟏
0 0

−𝟏

𝟑 ∙ 𝟐
1

−𝟏

𝟐 ∙ 𝟒
0 0 0

−𝟏

𝟑 ∙ 𝟒

−𝟏

𝟐 ∙ 𝟒
1 0

−𝟏

𝟒 ∙ 𝟐

−𝟏

𝟒 ∙ 𝟐

−𝟏

𝟑 ∙ 𝟏
0 0 1 0 0

0 0
−𝟏

𝟒 ∙ 𝟐
0 1

−𝟏

𝟐 ∙ 𝟐

0 0
−𝟏

𝟒 ∙ 𝟐
0

−𝟏

𝟐 ∙ 𝟐
1

𝑳 = 𝑰 − 𝑫−1/2𝑨𝑫−1/2

Normalized 

Laplacian matrix 
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Graph

◼ Node feature matrix 𝑿 ∈ ℛ𝑛×𝑓, 𝑓 denotes the dimension

Node Features1 Features2 Features3 Features4 Features5 Features6

x0 1 0 0 0 0 0

x1 0 1 0 0 0 0

x2 0 0 1 0 0 0

x3 0 0 0 1 0 0

x4 0 0 0 0 1 0

x5 0 0 0 0 0 1

1

0 2

3 4

5
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Graph Neural Network

Graph Structure

Node Features

Prediction, 

Recommendation,

Classification…

GNNs
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Graph Neural Network

◼ Graph Convolution Neural Network(GCN) [Kipf et al.,2017]

 Aggregating the neighbors’ node features,

 Training the weights with Message-Passing Scheme

 Architecture:

𝑯(ℓ+1) = 𝜎 ෩𝑷𝑯(ℓ)𝑾(ℓ)

neural networks

neural networks

neural networks

neural

networks
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Message passing scheme

1

0 2

3 4
5

representation of 
previous layer

෩𝑫−1/2෩𝑨෩𝑫−1/2

𝑯(ℓ+1) = 𝜎 ෩𝑷 ∙ 𝑯 ℓ ⋅ 𝑾 ℓ

weight matrix

x0

Node Features1 Features2 Features3 Features4 Features5 Features6

x0 1 0 0 0 0 0

x1 0 1 0 0 0 0

x2 0 0 1 0 0 0

x3 0 0 0 1 0 0

x4 0 0 0 0 1 0

x5 0 0 0 0 0 1

x0

Sum 0 1 1 1 0 0

Self-loop 1 1 1 1 0 0

Symmetry 1/ 𝟒 𝟒 1/ 𝟒 𝟑 1/ 𝟒 𝟓 1/ 𝟒 𝟐 0 0
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GCN and CNN

◼ CNN is also a (Message-Passing) GNN

 Aggregating the eight neighbors‘ and its own features

𝒉𝟐 𝒉𝟑

𝒉𝟒

𝒉𝟓𝒉𝟔𝒉𝟕

𝒉𝟖

𝒉𝟏

𝒉𝟎

𝑤1
𝑤2 𝑤3

𝑤4

𝑤5𝑤6
𝑤7

𝑤8

𝑤0
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Applications of graph machine learning

GNN can be used for classic graph 

algorithms, such as the graph 

biconnectivity problem.
[ICLR’2023 Best Paper]

GNN+Graph Algorithm GNN+Protein Analysis

DeepMind released its third-

generation protein analysis AI 

tool AlphaFold3 in Nature.
[Nature’2024]

GNN+Weather Forecasting

GraphCast, a weather model 

developed by DeepMind, has 

been published in Science. 
[Science’2023]. 
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◼ Overview of GNNs

◼ Spectral interpretation of GNNs

◼ Our works (OptBasisGNN, PolyGCL, PSHGCN)

◼ Summary & Perspectives

Outline
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GCN and Graph Signal Processing
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Graph Signal

◼ The temperature measured by sensors is considered as the 

Graph Signal, denoted by a vector 𝒙 ∈ ℛ𝑛.
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Graph Signal

◼ Operation on graph signal by Laplacian matrix 𝑳

𝒙1 = 𝟐𝑰 − 𝑳 𝒙

0

1

2

3
4

5

𝒙1

0

1

2

3
4

5

𝒙

∙ =
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Graph Signal

◼ Operation on graph signal by Laplacian matrix 𝑳

𝒙1 = 𝑳𝒙

0

1

2

3
4

5

𝒙1

0

1

2

3
4

5

𝒙

∙ =
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Graph Fourier Transform

◼ The eigendecomposition of Laplacian matrix 

𝑳 = 𝑼𝜦𝑼𝑇 = 𝑼
𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑛

𝑼𝑇 ,

where 𝑼 = [𝒖1, … , 𝒖𝑛], 𝜦 = diag([𝜆1, … , 𝜆𝑛]), 𝒖𝑖  and 𝜆𝑖 for 𝑖 ∈ {1,2, … , 𝑛} denote 

the eigenvectors and eigenvalues, respectively, and 𝜆𝑖 ∈ [0,2].

 Orthonormal basis: 𝑼 ∙ 𝑼𝑇 = 𝑰,

◼ Graph Fourier Transform of a signal:  ෝ𝒙 = 𝑼𝑇𝒙

◼ Inverse Graph Fourier Transform of a signal: 𝒙 = 𝑼ෝ𝒙



20

Graph Fourier Transform

◼ 𝑼𝑇𝒙 projects 𝒙 to the orthogonal basis consisting of 𝒖1, … , 𝒖𝑛

◼ Fourier Transform 

∙=

◼ Graph Fourier Transform

Ring Graph

Eigenvectors
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◼ (Convolution theorem): the Fourier transform of a convolution of 

two signals is the pointwise product of their Fourier transforms.

𝒙 ∗𝐺 𝒈 = 𝑼 𝑼𝑇𝒙 ⨀ 𝑼𝑇𝒈

 where ⨀ denotes Hadamard products, 𝑼𝑇𝒈 is the convolution filter. 

Reparametrize 𝑼𝑇𝒈 as 𝐝𝐢𝐚𝐠 𝜃1, … , 𝜃𝑛 ：

𝒙 ∗𝐺 𝒈 = 𝑼

𝜃1 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ 𝜃𝑛

𝑼𝑇𝒙

Graph Convolution

3. Inverse Graph 

Fourier Transform 

1. Graph Fourier 

Transform
2. Convolution 

operation
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Graph Filter

◼ Further reparametrize 𝜃𝑖 = ℎ 𝜆𝑖

◼ We call ℎ(𝚲)/ℎ(𝜆) (graph) filter.

𝒚 = ℎ 𝑳 𝒙 = 𝑼ℎ 𝚲 𝑼𝑇𝒙 = 𝑼
ℎ 𝜆1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ ℎ 𝜆n

𝑼𝑇𝒙

3. Inverse Graph 

Fourier Transform

1. Graph Fourier 

Transform
2. Filtering

𝑼ℎ 𝚲 𝑼𝑇𝒙 ℎ(𝚲)𝑼𝑇𝒙 𝑼𝑇𝒙
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Homo./Heterophilic Graph & Filter

7

54

6

1

3

2

8

7

54

6

1

3

2

8

7

54

6

1

3

2

8

7

54

6

1

3

2

8

Impulse low-pass

𝒚 = 𝑼
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

𝑼𝑇𝒙

Impulse high-pass

𝒚 = 𝑼
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

𝑼𝑇𝒙

Homophilic graph

Heterophilic graph
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Graph Filter

◼ How to design arbitrary filters?

 The 𝑶 𝒏𝟐 complexity of eigendecomposition is too high.

◼ Approximating filters by polynomials, complexity drops to 𝑶 𝒎 .

𝒚 ≈ 𝑼

෍

𝑘=0

𝐾

𝑤𝑘𝜆1
𝑘 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ ෍

𝑘=0

𝐾

𝑤𝑘𝜆𝑛
𝑘

𝑼𝑇𝒙 = ෍

𝑘=0

𝐾

𝑤𝑘𝑳𝑘𝒙

𝒚 = 𝑼
ℎ(𝜆1) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ ℎ(𝜆𝑛)

𝑼𝑇𝒙
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Pioneering work

Spectral CNN [Bruna et al., ICLR’14] ChebNet [Defferrard et al., NeurIPS’16] GCN [Kipf et al., ICLR’17]

𝑯(ℓ+1) = 𝜎 σ𝑘=0
𝐾 𝑇𝑘(෠𝑳) 𝑯(ℓ)𝑾(ℓ,𝑘)  𝑯(ℓ+1) = 𝜎 ෩𝑷 ∙ 𝑯 ℓ ⋅ 𝑾 ℓ
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Spectral-based GNNs

◼ GCN[Kipf et al.,2017] uses a simplified first-order Chebyshev polynomial.

 Filtering operation: (set 𝑤0 = −𝑤1 = 𝜃 in σ𝑘=0
𝐾=1 𝑤𝑘𝑇𝑘 𝜆 )

 The filter of K layer GCN: ℎ ሚ𝜆 = (1 − ሚ𝜆)𝐾 , a fixed low-pass filter.

𝜃 ෩𝑫−1/2 ෩𝑨෩𝑫−1/2 𝒙

Renormalization trick

𝒚 = 𝜃𝑰 − 𝜃(𝑳 − 𝑰) 𝒙

= 𝜃 𝑰 + 𝑫−1/2𝑨𝑫−1/2 𝒙

= 𝜃 2𝑰 − 𝑳 𝒙

Accuracy of node classification on 

heterophilic graphs with GCN.
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Polynomial Based Methods

𝑯(ℓ+1) = 𝜎 1 − 𝛼ℓ
෩𝑷𝑯(ℓ) + 𝛼ℓ𝑯(0) 𝟏 − 𝛽ℓ 𝑰𝑛 + 𝛽ℓ𝑾(ℓ)

GCNII [Chen et al., ICML’20] (Ours) GPRGNN [Chien et al., ICLR’21]

𝒀 = ෍

𝑘=0

𝐾

𝛾𝑘𝑯 𝑘 , 𝑯(𝑘) = ෩𝑷𝑯(𝑘−1)
𝒀 = ෍

𝑘=0

𝐾

𝜃𝑘

1

2𝑘
𝐾
𝑘

(2𝑰 − 𝑳)𝐾−𝑘𝑳𝑘 𝑿

BernNet [He et al., NeurIPS’21] (Ours) 
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Polynomial Based Methods

𝐘 =
2

𝐾 + 1
෍

𝑘=0

𝐾

෍

𝑗=0

𝐾

𝛾𝑗𝑇𝑘 𝑥𝑗 𝑇𝑘
෠𝑳 𝑿

JacobiConv [Wang et al., ICML’22] ChebNetII [He et al., NeurIPS’22] (Ours) 

⚫ Learn the basis？
⚫ Optimal Basis？

𝒀 = ෍

𝑘=0

𝐾

𝛼𝑘𝑃𝑘
𝑎,𝑏 ෩𝑷 𝑿

OPTBasis [Guo et al., ICML’23] (Ours) 
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◼ Overview of GNNs

◼ Spectral interpretation of GNNs

◼ Our works (OptBasisGNN, PolyGCL, PSHGCN)

◼ Summary & Perspectives

Outline
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Motivations
GPR-GNN [Chien et al., 2021]

◼ Learn the bases？

◼ Optimal bases？

ChebNet [Defferrard et al., 2016]

BernNet [He et al., 2021] JacobiConv [Wang et al., 2022]

Yuhe G, Wei Z. Graph Neural Networks with Learnable and Optimal Polynomial Bases [ICML’23] (Ours)
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FavardGNN

• [Three-term Recurrence]  Any orthonormal 

polynomial series satisfies the three-term 

recurrence formula: 

• [Favard’s Theorem] Conversly, any

polynomial series of such a recurrence is 

deemed to be orthonormal w.r.t. some 

weight function!

Yuhe G, Wei Z. Graph Neural Networks with Learnable and Optimal Polynomial Bases [ICML’23] (Ours)
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OptBasisGNN

◼ Q2: Is there an standard  for “optimal 

bases”? Can we achieve them? 
 JacobiConv [ICML’22] proposed a definition of the 

optimal basis from the perspective of convergence;

 But JacobiConv believe habitually that intractable 

eigen-decomposition is unavoidable. Thus the 

optimal basis cannot be utilized.

 We solve this optimal polynomial basis exactly in an 

implicit way 

◼ We solve the accompanying optimal vector 

basis.

 The next basis depends on the last and second 

last solved basis.

◼ Eigen-decomposition is avoided!

Yuhe G, Wei Z. Graph Neural Networks with Learnable and Optimal Polynomial Bases [ICML’23] (Ours)
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Experiments

4. Three-channel 

regression 
experiment: 

argmin|𝒁 − 𝒀|𝟐

3. Scalability 

experiments

1. Node 

classification (1)

2. Node Classification 

(Continued)

Yuhe G, Wei Z. Graph Neural Networks with Learnable and Optimal Polynomial Bases [ICML’23] (Ours)
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PolyGCL: GRAPH CONTRASTIVE LEARNING 

via Learnable Spectral Polynomial Filters

(ICLR 2024, spotlight)

Jingyu Chen, Runlin Lei, Zhewei Wei*
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◼ Graph self-supervised learning (SSL)

◼ A natural idea: Can we incorporate the excellent properties of spectral 

polynomial filters into graph contrastive learning?

Motivations

GNN 

Encoder

SSL Loss

Chen J, Lei R, Wei Z. PolyGCL: Graph Contrastive Learning via Learnable Spectral Polynomial Filters. [ICLR’24] (Ours)

Spectral GNNs in 

supervised settings.

Plug in GCL setting 

directly?

𝐗𝐀

𝑁 × 𝑑 𝑁 × 𝑑

Linear 

Classifier

𝐙 𝐙
Label 𝑦 

𝑁 ×  1

logits

Stage 2: Downstream tasks
Acc.
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Model: PolyGCL

◼ PolyGCL

 Encoder: ChebNetII [He et al., 2022]

 Decoupling low-pass and high-pass:

Chen J, Lei R, Wei Z. PolyGCL: Graph Contrastive Learning via Learnable Spectral Polynomial Filters. [ICLR’24] (Ours)

𝐗

P
o
ly

𝐋

P
o
ly

P
o
ly

High-pass

Low-pass

ℎ(𝜆)

ℎ(𝜆)

ℎ(𝜆)

ℎ(𝜆)

ℎ(𝜆)

ℎ(𝜆)

……

……

ℎ(𝜆) ℎ(𝜆) ℎ(𝜆)

……

Linear

Combination

𝑁 × 𝑑

𝑁 × 𝑑

1 × 𝑑
Pooling

Contrast

Contrast

𝐘 =
2

𝐾 + 1
σ𝑘=0

𝐾 σ𝑗=0
𝐾 𝛾𝑗𝑇𝑘 𝑥𝑗 𝑇𝑘

෠𝑳 𝐗

𝛾𝑗

𝛾𝑗+1

𝛾𝑗

𝛾𝑗+1

𝑥𝑗 𝑥𝑗+1

𝐘 =
2

𝐾 + 1
σ𝑘=0

𝐾 σ𝑗=0
𝐾 𝛾𝑗𝑇𝑘 𝑥𝑗 𝑇𝑘

෠𝑳 𝐗

𝑥𝑗 𝑥𝑗+1
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Experiments

 Downstream task

◼ Node classification

◼ Split: 60%/20%/20%

 Datasets

◼ Synthetic: 

 cSBM [Chien et al., 2021]

 Parameter 𝜙 ∈ [−1,1]

◼ Real-world:

 Homophilic & Heterophilic

Results:
Baselines: homophily assumption.

PolyGCL: works in all settings.

Chen J, Lei R, Wei Z. PolyGCL: Graph Contrastive Learning via Learnable Spectral Polynomial Filters. [ICLR’24] (Ours)
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Experiments

Linear coefficients: 𝛼 + 𝛽 = 1 Normalized learned filters Time complexity：𝑂(𝐾𝐸 + 𝑁)

𝜙 < 0: low-pass information 

accounts for less.

𝜙 < 0: increasing fuctions;

𝜙 = 0: all-pass property.

PolyGCL: SOTA performance 

with satisfactory efficiency.

Chen J, Lei R, Wei Z. PolyGCL: Graph Contrastive Learning via Learnable Spectral Polynomial Filters. [ICLR’24] (Ours)
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Spectral Heterogeneous Graph Convolutions via 

Positive Noncommutative Polynomials

(TheWebConf 2024, Oral)

Mingguo He, Zhewei Wie, Shikun Feng, 

Zhengjie Huang, Weibin Li, Yu Sun, Dianhai Yu
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Motivation

◼ Heterogeneous graphs are ubiquitous in our lives

◼ Traditional meta-path methods manually define meta-paths or learn them

Academic network Social network Movie network

He M, Wei Z, et al. Spectral Heterogeneous Graph Convolutions via Positive Noncommutative Polynomials. [TheWebConf’24] (Ours)

Meta-pathsHeterogeneous graph

𝐀1𝐀2 =
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Motivation

◼ How can we define a valid heterogeneous graph convolution on the 

spectral domain?

◼ Existing HGNNs do not meet these

He M, Wei Z, et al. Spectral Heterogeneous Graph Convolutions via Positive Noncommutative Polynomials. [TheWebConf’24] (Ours)

Can learn arbitrary

heterogenous graph filters

Heterogenous filters have 

to be positive semidefinite

Spectral-based GNNs learn arbitrary filters on

homogeneous graphs

A generalized heterogeneous graph optimization problem

min
𝐲

𝑓 𝐲 = min
𝐲

1 − 𝛼 𝐲𝑇𝛾 𝐀1, 𝐀2, … , 𝐀𝑅 𝐲 + 𝛼 𝐲 − 𝐱 2
2
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Method：PSHGCN

◼ Use positive noncommutative polynomials to approximate valid 

heterogeneous graph filters

◼ Positive Spectral Heterogeneous Graph Convolutional Network

ℎ 𝐀1, 𝐀2, … , 𝐀𝑅 = ෍
𝑖
𝑔𝑖 𝐀1, 𝐀2, … , 𝐀𝑅

T𝑔𝑖 𝐀1, 𝐀2, … , 𝐀𝑅

Sum of Squares[1]

➢ guarantees the filter ℎ
is positive semidefinite

[1] J William Helton. " positive" noncommutative polynomials are sums of squares. Annals of Mathematics, pages 675–694, 2002. 

He M, Wei Z, et al. Spectral Heterogeneous Graph Convolutions via Positive Noncommutative Polynomials. [TheWebConf’24] (Ours)
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Experiment

◼ Node classification

He M, Wei Z, et al. Spectral Heterogeneous Graph Convolutions via Positive Noncommutative Polynomials. [TheWebConf’24] (Ours)



44

Experiment

◼ Link prediction ◼ Node classification on ogbn-mag 
(1.9M nodes and 21.1M edges)

He M, Wei Z, et al. Spectral Heterogeneous Graph Convolutions via Positive Noncommutative Polynomials. [TheWebConf’24] (Ours)
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◼ Overview of GNNs

◼ Spectral interpretation of GNNs

◼ Our works (OptBasisGNN, PolyGCL, PSHGCN)

◼ Summary & Perspectives

Outline
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Summary

◼ The theoretical foundation of GCN is the graph signal theory. 

GCN is a fixed linear low-pass filter that is inapplicable to heterophilic 

graphs. FavardGNN can learn arbitrary filters, and OptBasisGNN achieves 

an optimal convergence rate.

Using polynomial filters with graph contrastive learning, PolyGCL can 

enhance performance on both homophilic and heterophilic graphs.

 PSHGCN can learn arbitrary heterogeneous graph filters using positive 

noncommutative polynomials.

◼ Perspectives
 Theoretical assumptions of graph machine learning.

 Efficient computation of spectral-based GNN.
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Team Members & Collaborators

Yaliang Li Zengfeng Huang Hongteng Xu Bolin DingJiajun LiuSibo Wang Zhen Wang

Team Members

Collaborators

Gengmo Zhou

Jiajun Li Fangrui LvHanzhi Wang Yanping Zheng Mingguo He

Zhewei Wei Ruoqi ZhangJinjia FengYuhe Guo Xu Liu Mingji Yang

Tianjing Zeng

Yang Zhang

Jingyu Chen Jiahong MaRunlin Lei Guanyu CuiHaipeng Ding Lu Yi

Zhe Yuan

Xiang Li



Thanks!

Q&A
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